organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2,9-dimethyl-1,10-phenanthrolin-1ium) hydrogen (S,S)-tartrate nonahydrate

Zohreh Derikvand^a* and Marilyn M. Olmstead^b

^aYoung Researchers Club, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran, and ^bDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5292, USA Correspondence e-mail: zderik@yahoo.com

Received 1 December 2010; accepted 6 December 2010

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.006 Å; R factor = 0.090; wR factor = 0.173; data-to-parameter ratio = 11.5.

The asymmetric unit of the title compound, $2C_{14}H_{13}N_2^+$. 2C₄H₅O₆-.9H₂O, contains two cations and two anions in addition to nine molecules of water. Each of the hydrogen tartrate anions is hydrogen bonded to itself by translation along [100] in a head-to-tail fashion *via* a short hydrogen bond with donor-acceptor distances of 2.473 (4) and 2.496 (4) Å. A large number of intermolecular O-H···O, N-H···O and C-H···O hydrogen-bonding interactions, as well as $\pi - \pi$ stacking [centroid–centroid distances in the range 3.642(3) to 3.866 (3) Å], play an important role in the crystal structure.

Related literature

For proton-transfer structures of tartaric acid, see: Bai et al. (2005); Derikvand & Olmstead (2010); Paixão et al. (1999); Ryttersgaard & Larsen (2003); Smith et al. (2006); Su et al. (2009); Suresh et al. (2006); Wang et al. (2008); Zhang et al. (2006).

Experimental

Crystal data

 $2C_{14}H_{13}N_2^+ \cdot 2C_4H_5O_6^- \cdot 9H_2O_6$ $M_r = 878.83$ Orthorhombic, P212121 a = 7.0927 (5) Å b = 23.3998 (15) Å c = 24.9335 (16) Å

V = 4138.2 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^-$ T = 90 K $0.53 \times 0.06 \times 0.05 \ \mathrm{mm}$

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.975, T_{\max} = 0.994$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.090$
$wR(F^2) = 0.173$
S = 1.25
7023 reflections
611 parameters
111 restraints

49446 measured reflections 7023 independent reflections 6177 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.097$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$N2-H2A\cdots O1W$	0.88	1.97	2.820 (5)	162	
$N4-H4C\cdots O7W$	0.88	1.98	2.814 (5)	159	
$O4-H4\cdots O6W$	0.84	1.80	2.633 (5)	175	
$O9-H9C\cdots O5W$	0.84	1.83	2.673 (4)	177	
$O10-H10A\cdots O4W$	0.84	1.79	2.627 (5)	172	
$O2W - H2C \cdots O11$	0.86 (4)	1.97 (2)	2.783 (4)	157 (4)	
O3W−H3C···O5	0.87 (4)	1.95 (2)	2.798 (5)	168 (5)	
$O2W - H2D \cdots O8W$	0.88	2.42	2.903 (5)	115	
$O5W-H5A\cdots O3$	0.87 (4)	2.04 (3)	2.827 (4)	151 (5)	
$O5W-H5A\cdots O2$	0.87 (4)	2.35 (4)	3.020 (4)	135 (5)	
$O8W - H8B \cdots O2W$	0.87(2)	2.03 (2)	2.903 (5)	178 (5)	
$O9W - H9A \cdots O2$	0.86 (4)	1.89 (2)	2.744 (4)	175 (5)	
O9W−H9B···O9	0.87 (4)	2.08 (4)	2.849 (4)	147 (5)	
O9W−H9B···O8	0.87 (4)	2.26 (4)	2.958 (4)	137 (5)	
$O1-H1$ ··· $O5^{i}$	0.99 (6)	1.49 (6)	2.473 (4)	172 (5)	
O7-H7···O11 ⁱ	0.91 (6)	1.60 (6)	2.496 (4)	167 (5)	
$O4W-H4B\cdots O12^{i}$	0.87 (2)	1.85 (2)	2.720 (5)	178 (6)	
$O6W - H6B \cdot \cdot \cdot O6^{i}$	0.86 (3)	1.93 (2)	2.776 (5)	167 (5)	
$O3-H3B\cdots O9W^{ii}$	0.84	1.81	2.647 (5)	173	
$O5W - H5B \cdots O8^{ii}$	0.87 (4)	1.91 (2)	2.761 (4)	168 (5)	
$O1W-H1A\cdots O2W^{iii}$	0.87 (4)	2.22 (3)	3.062 (5)	161 (5)	
$O1W-H1B\cdots O5W^{iii}$	0.87 (4)	1.96 (2)	2.811 (5)	168 (6)	
$O3W - H3D \cdot \cdot \cdot O8W^{iii}$	0.87 (4)	2.02 (2)	2.876 (5)	168 (5)	
$O4W-H4A\cdots O10^{iv}$	0.87 (4)	1.99 (3)	2.815 (4)	160 (5)	
$O4W-H4A\cdots O12^{iv}$	0.87 (4)	2.40 (4)	2.998 (4)	127 (4)	
$O6W-H6A\cdots O4^{v}$	0.87 (4)	2.15 (4)	2.892 (4)	143 (5)	
$O6W - H6A \cdots O6^{v}$	0.87 (4)	2.19 (4)	2.909 (5)	140 (5)	
$O7W - H7A \cdots O3W^{vi}$	0.87 (4)	2.17 (3)	2.988 (5)	156 (5)	
$O7W - H7B \cdot \cdot \cdot O9W^{vii}$	0.87 (4)	2.02 (2)	2.869 (5)	165 (5)	
O8W−H8A····O1 ^{vii}	0.87 (4)	2.06 (2)	2.926 (5)	170 (5)	
Symmetry codes: (i) $x - 1, y, z$; (ii) $x + 1, y, z$; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv)					

 $-x, y - \frac{1}{2}, -z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2765).

References

Bai, G.-Y., Chen, L.-G., Li, Y., Yan, X.-L., Xing, P., Dong, C.-M., Duan, X.-M., Zhang, Y.-C. & Ge, F.-Y. (2005). *Acta Cryst.* E61, o1125–o1126.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Derikvand, Z. & Olmstead, M. M. (2010). Acta Cryst. E66, o185.

Paixão, J. A., Pereira Silva, P. S., Matos Beja, A., Ramos Silva, M., de Matos Gomes, E. & Belsley, M. (1999). Acta Cryst. C55, 1287–1290.

Ryttersgaard, C. & Larsen, S. (2003). Acta Cryst. E59, 01715-01716.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G., Wermuth, U. D. & White, J. M. (2006). Acta Cryst. C62, 0694–0698. Su, H., Lv, Y.-K. & Feng, Y.-L. (2009). Acta Cryst. E65, 0933.
- Sur, H., EV, T.K. & Peng, P.-P. (2007). Acta Cryst. E60, 0555.
 Suresh, J., Krishnakumar, R. V., Rajagopal, K. & Natarajan, S. (2006). Acta Cryst. E62, 03220–03222.
- Wang, X.-H., Chao, B. & Qiu, Z.-B. (2008). Acta Cryst. E64, 0784.
- Zhang, Y.-C., Bai, G.-Y., Zeng, T., Li, J.-S. & Yan, X.-L. (2006). Acta Cryst. E62, o1511–01512.

Acta Cryst. (2011). E67, o87-o88 [doi:10.1107/S160053681005110X]

Bis(2,9-dimethyl-1,10-phenanthrolin-1-ium) hydrogen (S,S)-tartrate nonahydrate

Z. Derikvand and M. M. Olmstead

Comment

We recently reported the structure of the trihydrate of a salt formed by proton transfer from D-tartaric acid to phenanthroline (Derikvand & Olmstead, 2010). An interesting feature of this structure was the existence of a short hydrogen bond between adjacent tartrate anions. There are many other proton transfer structures of tartaric acid, for example, (Paixão et al., 1999; Ryttersgaard & Larsen, 2003; Bai et al., 2005; Zhang et al., 2006; Smith, et al., 2006; Suresh et al., 2006; Wang et al., 2008; Su et al., 2009), some of which feature similar short hydrogen bonds. The title structure contains two protonated cations of 2,9-dimethyl-1,10-phenanthroline (neocuproine), two anions of mono-deprotonated D-tartaric acid and nine water molecules. As shown in Fig. 1, one of the protons of the tartaric acid carboxylic groups has been transferred to one of the nitrogen atoms of the 2,9-dimethyl-1,10-phenanthroline molecule. The structure reveals a pattern similar to that seen in the previous structure of (phen)(D-tartrate) 3H₂O. In particular, the carboxylic acid group at one end of the tartrate anion is hydrogen bonded to the deprotonated carboxylic acid group of an adjacent tartrate anion in a linear, head-to-tail fashion. Each of the two tartrate anions in the asymmetric unit displays this kind of hydrogen bond (Fig. 2). These hydrogen bonds are short (O···O distances of 2.473 (4) Å and 2.496 (4) Å), and are propagated by unit translations of the anions along the a-direction. In addition, the O-H distance is longer, the H···O distance is shorter and the O-H···O angle is more linear than other O—H…O interactions in the structure. A large number of additional hydrogen bonding interactions are also present. It is notable that crystal growth along the a-direction is clearly preferred. In the crystal used for data collection, the longest dimension, 0.53 mm, corresponds to the [100] direction. The two shorter dimensions, 0.05 mm and 0.06 mm, correspond to [010] and [001], respectively. Details of the O-H···O, N-H···O and C-H···O hydrogen bonds are given in Table 1. As was seen in the structure containing phen, the cationic dmpH⁺ units are stacked together via $\pi - \pi$ interactions. The centroid-centroid distances fall in the range 3.642 (3) Å to 3.866 (3) Å. The overall packing of the structure is depicted in Fig. 3.

Experimental

To an aqueous solution of D-tartaric acid (75 mg, 1 mmol) in water (10 ml) was added a solution of 2,9-dimethyl-1,10-phenanthroline (100 mg, 1 mmol) in methanol (10 ml) in a 1:1 molar ratio. The solution was stirred for 1 h. By slow evaporation of the solvent at room temperature, colorless needles were obtained after 1 week.

Refinement

Hydrogen atoms H1 and H7 were allowed to freely refine with isotropic thermal parameters tied to 1.2 times the equivalent isotropic values of their parent O atoms. Water hydrogen atoms were located in a difference Fourier map and subsequently refined with restraints of 0.87 (2) for O—H distances and 1.34 (4) for O···O distances. N—H distances were restrained to 0.88 Å, hydroxyl O—H to 0.84 Å, and C—H to 0.98 Å using a riding model and U(iso) = 1.2 U(eq). The carbon atoms C29 to C36 were restrained to ISOR 0.004. In addition, the positional parameters of H2D were fixed due to disorder involving O2W and O8W that could not be resolved. In the absence of significant anomalous dispersion, Friedel opposites were merged in the final cycles of refinement.

Figures

Fig. 1. A drawing of the asymmetric unit of the title compound. Thermal ellipsoids are drawn at the 50% probability level.

Fig. 3. Crystal packing diagram as viewed down c.

 $D_{\rm x} = 1.411 {\rm Mg m}^{-3}$ Melting point: 523 K

 $\theta = 3.0-30.5^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 90 K

Needle, colorless $0.53 \times 0.06 \times 0.05 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 7481 reflections

Bis(2,9-dimethyl-1,10-phenanthrolin-1-ium) hydrogen (S,S)-tartrate nonahydrate

Crystal data

$2C_{14}H_{13}N_2^+ \cdot 2C_4H_5O_6^- \cdot 9H_2O$
$M_r = 878.83$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
a = 7.0927 (5) Å
<i>b</i> = 23.3998 (15) Å
<i>c</i> = 24.9335 (16) Å
$V = 4138.2 (5) \text{ Å}^3$
Z = 4
F(000) = 1864

Data collection

Bruker APEXII diffractometer	7023 independent reflections
Radiation source: fine-focus sealed tube	6177 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.097$
Detector resolution: 8.3 pixels mm ⁻¹	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = -32 \rightarrow 33$

(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.975, \ T_{\max} = 0.994$	$l = -35 \rightarrow 35$
49446 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.090$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.173$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.25	$w = 1/[\sigma^2(F_o^2) + (0.0387P)^2 + 8.4022P]$ where $P = (F_o^2 + 2F_c^2)/3$
7023 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
611 parameters	$\Delta \rho_{max} = 0.47 \text{ e} \text{ Å}^{-3}$
111 restraints	$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
N1	0.0327 (5)	0.46527 (16)	0.33329 (14)	0.0095 (7)
N2	0.0442 (6)	0.56743 (15)	0.38606 (15)	0.0099 (7)
H2A	0.0154	0.5648	0.3518	0.012*
C1	0.0288 (7)	0.41562 (18)	0.30782 (18)	0.0117 (8)
C2	0.0453 (7)	0.36264 (18)	0.33514 (18)	0.0113 (8)
H2	0.0373	0.3279	0.3156	0.014*
C3	0.0728 (7)	0.36145 (19)	0.38948 (18)	0.0123 (9)
Н3	0.0835	0.3262	0.4080	0.015*
C4	0.0850 (7)	0.41442 (18)	0.41757 (18)	0.0109 (8)
C5	0.1207 (7)	0.4176 (2)	0.47412 (18)	0.0134 (9)
H5	0.1305	0.3834	0.4946	0.016*
C6	0.1406 (7)	0.4690 (2)	0.49855 (19)	0.0163 (9)
H6	0.1709	0.4705	0.5356	0.020*
C7	0.1163 (7)	0.52117 (19)	0.46895 (18)	0.0117 (8)
C8	0.1368 (8)	0.5760 (2)	0.49209 (19)	0.0172 (10)
H8	0.1722	0.5795	0.5287	0.021*
C9	0.1059 (7)	0.62418 (19)	0.46203 (19)	0.0154 (9)
H9	0.1173	0.6608	0.4781	0.018*
C10	0.0575 (6)	0.61955 (18)	0.40778 (18)	0.0105 (8)

C11	0.0611 (7)	0.46398 (18)	0.38698 (17)	0.0101 (8)
C12	0.0728 (6)	0.51851 (18)	0.41399 (17)	0.0098 (8)
C13	0.0119 (7)	0.4179 (2)	0.24814 (18)	0.0138 (9)
H13A	-0.0464	0.4542	0.2376	0.021*
H13B	-0.0664	0.3861	0.2357	0.021*
H13C	0.1376	0.4150	0.2320	0.021*
C14	0.0211 (7)	0.67108 (18)	0.37334 (19)	0.0125 (9)
H14A	0.0576	0.6627	0.3363	0.019*
H14B	0.0953	0.7034	0.3867	0.019*
H14C	-0.1132	0.6807	0.3746	0.019*
N3	0.5130 (5)	0.01878 (15)	0.17341 (15)	0.0100 (7)
N4	0.4445 (6)	-0.07881 (15)	0.11789 (14)	0.0092 (7)
H4C	0.4710	-0.0784	0.1524	0.011*
C15	0.5497 (7)	0.06682 (19)	0.20033 (19)	0.0124 (9)
C16	0.5333 (7)	0.12188 (18)	0.1758 (2)	0.0143 (9)
H16	0.5585	0.1553	0.1962	0.017*
C17	0.4817 (7)	0.1269 (2)	0.1230 (2)	0.0151 (9)
H17	0.4715	0.1633	0.1065	0.018*
C18	0.4442 (7)	0.07635 (19)	0.09370 (19)	0.0135 (9)
C19	0.3935 (7)	0.0763 (2)	0.0377 (2)	0.0168 (10)
H19	0.3816	0.1117	0.0193	0.020*
C20	0.3627 (8)	0.0273 (2)	0.0110 (2)	0.0195 (10)
H20	0.3306	0.0286	-0.0260	0.023*
C21	0.3776 (7)	-0.0270 (2)	0.03751 (19)	0.0155 (9)
C22	0.3541 (7)	-0.0806 (2)	0.01155 (18)	0.0150 (9)
H22	0.3215	-0.0817	-0.0254	0.018*
C23	0.3776 (7)	-0.13030 (19)	0.03872 (18)	0.0125 (9)
H23	0.3621	-0.1658	0.0207	0.015*
C24	0.4246 (7)	-0.12946 (19)	0.09344 (18)	0.0115 (8)
C25	0.4603 (7)	0.02428 (19)	0.12140 (18)	0.0120 (8)
C26	0.4256 (7)	-0.02800 (19)	0.09198 (18)	0.0115 (8)
C27	0.6064 (8)	0.0606 (2)	0.25742 (19)	0.0164 (10)
H27A	0.6325	0.0204	0.2652	0.025*
H27B	0.5042	0.0741	0.2806	0.025*
H27C	0.7201	0.0834	0.2641	0.025*
C28	0.4518 (7)	-0.18329 (17)	0.12542 (18)	0.0116 (8)
H28A	0.5132	-0.1741	0.1596	0.017*
H28B	0.5311	-0.2099	0.1051	0.017*
H28C	0.3290	-0.2009	0.1324	0.017*
01	0.0522 (5)	0.35066 (13)	0.12922 (12)	0.0088 (6)
H1	-0.088 (8)	0.353 (2)	0.129 (2)	0.011*
O2	0.0346 (4)	0.28017 (13)	0.18981 (13)	0.0101 (6)
O3	0.4033 (5)	0.25951 (12)	0.18514 (12)	0.0094 (6)
H3B	0.5020	0.2671	0.2023	0.011*
O4	0.3405 (5)	0.26187 (13)	0.07110 (13)	0.0101 (6)
H4	0.2505	0.2719	0.0513	0.012*
O5	0.7038 (4)	0.35075 (13)	0.12500 (13)	0.0096 (6)
O6	0.7107 (5)	0.27534 (13)	0.07009 (13)	0.0110 (6)
C29	0.1247 (6)	0.31162 (17)	0.16055 (16)	0.0068 (8)

C30	0.3399 (6)	0.30930 (18)	0.15785 (16)	0.0059 (7)
H30	0.3918	0.3436	0.1766	0.007*
C31	0.4082 (6)	0.30995 (18)	0.09990 (16)	0.0068 (8)
H31	0.3597	0.3454	0.0822	0.008*
C32	0.6237 (6)	0.31068 (17)	0.09741 (16)	0.0062 (7)
07	-0.4298 (4)	0.13513 (13)	0.38098 (13)	0.0088 (6)
H7	-0.557 (9)	0.132 (2)	0.377 (2)	0.011*
08	-0.4525 (5)	0.19870 (13)	0.31384 (13)	0.0102 (6)
09	-0.0879 (5)	0.22177 (13)	0.31636 (12)	0.0101 (6)
H9C	0.0058	0.2126	0.2976	0.012*
O10	-0.1366 (5)	0.22847 (13)	0.43072 (13)	0.0096 (6)
H10A	-0.2398	0.2219	0.4460	0.012*
011	0.2185 (4)	0.13303 (13)	0.38332 (12)	0.0077 (6)
012	0.2307 (5)	0.21666 (13)	0.42670 (13)	0.0112 (6)
C33	-0.3603 (6)	0.17098 (17)	0.34588 (17)	0.0073 (8)
C34	-0.1458 (6)	0.17432 (17)	0.34727 (17)	0.0061 (7)
H34	-0.0937	0.1389	0.3305	0.007*
C35	-0.0721 (6)	0.17825 (17)	0.40533 (17)	0.0059 (7)
H35	-0.1189	0.1444	0.4259	0.007*
C36	0.1436 (6)	0.17735 (18)	0.40528 (16)	0.0066 (8)
O1W	-0.0728 (6)	0.58367 (14)	0.27904 (14)	0.0177 (7)
H1A	-0.076 (9)	0.5612 (18)	0.2511 (15)	0.021*
H1B	-0.132 (8)	0.6140 (15)	0.268 (2)	0.021*
O2W	0.1114 (5)	0.03182 (14)	0.33319 (14)	0.0173 (7)
H2C	0.153 (8)	0.0565 (14)	0.3558 (16)	0.021*
H2D	0.1089	0.0003	0.3521	0.021*
O3W	0.5757 (5)	0.45505 (14)	0.16602 (14)	0.0161 (7)
H3C	0.599 (8)	0.4224 (14)	0.151 (2)	0.019*
H3D	0.466 (5)	0.464 (2)	0.153 (2)	0.019*
O4W	-0.4478 (5)	0.21368 (13)	0.48609 (12)	0.0100 (6)
H4A	-0.479 (7)	0.2357 (18)	0.5126 (14)	0.012*
H4B	-0.550 (5)	0.215 (2)	0.4667 (17)	0.012*
O5W	0.2110 (5)	0.18871 (13)	0.25895 (12)	0.0090 (6)
H5A	0.229 (7)	0.2143 (17)	0.2344 (14)	0.011*
H5B	0.307 (5)	0.195 (2)	0.2797 (17)	0.011*
O6W	0.0447 (5)	0.29367 (14)	0.01471 (13)	0.0112 (6)
H6A	0.035 (8)	0.2697 (17)	-0.0118 (14)	0.013*
H6B	-0.064 (4)	0.293 (2)	0.0301 (19)	0.013*
O7W	0.4713 (5)	-0.10319 (14)	0.22815 (13)	0.0143 (7)
H7A	0.453 (8)	-0.0775 (16)	0.2527 (17)	0.017*
H7B	0.407 (7)	-0.1320 (15)	0.240 (2)	0.017*
O8W	-0.2016 (5)	-0.03301 (14)	0.37713 (14)	0.0153 (7)
H8A	-0.146 (7)	-0.0662 (12)	0.378 (2)	0.018*
H8B	-0.108 (5)	-0.0129 (18)	0.365 (2)	0.018*
O9W	-0.3015 (5)	0.28971 (14)	0.24357 (12)	0.0105 (6)
H9A	-0.200 (5)	0.286 (2)	0.2251 (18)	0.013*
H9B	-0.283 (8)	0.2656 (18)	0.2694 (14)	0.013*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0071 (16)	0.0114 (17)	0.0099 (16)	-0.0012 (14)	-0.0031 (14)	-0.0001 (13)
N2	0.0111 (17)	0.0084 (17)	0.0102 (16)	-0.0026 (14)	-0.0035 (15)	-0.0004 (13)
C1	0.012 (2)	0.009 (2)	0.015 (2)	0.0000 (17)	0.0034 (17)	-0.0036 (16)
C2	0.014 (2)	0.0051 (18)	0.015 (2)	0.0008 (16)	-0.0018 (18)	-0.0039 (15)
C3	0.013 (2)	0.011 (2)	0.0127 (19)	-0.0005 (17)	-0.0035 (18)	0.0029 (16)
C4	0.010 (2)	0.011 (2)	0.0119 (19)	0.0030 (17)	0.0004 (16)	0.0020 (15)
C5	0.015 (2)	0.014 (2)	0.012 (2)	0.0048 (18)	-0.0010 (18)	0.0074 (16)
C6	0.018 (2)	0.019 (2)	0.012 (2)	0.001 (2)	-0.0013 (19)	0.0028 (18)
C7	0.010 (2)	0.013 (2)	0.0119 (19)	-0.0019 (17)	-0.0003 (17)	0.0003 (16)
C8	0.019 (2)	0.019 (2)	0.013 (2)	-0.001 (2)	-0.0055 (19)	-0.0060 (18)
С9	0.019 (2)	0.010(2)	0.017 (2)	0.0022 (18)	-0.005 (2)	-0.0097 (17)
C10	0.0056 (19)	0.011 (2)	0.015 (2)	-0.0015 (16)	-0.0013 (17)	0.0000 (16)
C11	0.012 (2)	0.0079 (19)	0.0100 (19)	0.0017 (16)	0.0003 (17)	-0.0007 (15)
C12	0.007 (2)	0.010 (2)	0.0118 (19)	-0.0013 (16)	0.0012 (16)	-0.0010 (15)
C13	0.021 (2)	0.011 (2)	0.0097 (18)	0.0004 (18)	0.0034 (17)	-0.0036 (16)
C14	0.008 (2)	0.0073 (19)	0.022 (2)	-0.0009 (16)	-0.0018 (18)	-0.0030 (17)
N3	0.0077 (17)	0.0094 (17)	0.0130 (17)	0.0006 (13)	-0.0016 (14)	-0.0025 (14)
N4	0.0122 (18)	0.0065 (16)	0.0089 (16)	-0.0011 (14)	-0.0017 (15)	-0.0023 (13)
C15	0.010 (2)	0.011 (2)	0.017 (2)	-0.0013 (17)	0.0069 (18)	-0.0055 (16)
C16	0.015 (2)	0.0040 (19)	0.024 (2)	0.0016 (16)	0.011 (2)	-0.0054 (16)
C17	0.009 (2)	0.009 (2)	0.027 (2)	0.0023 (16)	0.0029 (19)	-0.0036 (18)
C18	0.011 (2)	0.009 (2)	0.021 (2)	0.0006 (17)	0.0056 (19)	0.0014 (17)
C19	0.011 (2)	0.017 (2)	0.023 (2)	0.0020 (18)	-0.0004 (19)	0.0108 (19)
C20	0.018 (2)	0.024 (3)	0.017 (2)	-0.004 (2)	-0.004 (2)	0.009 (2)
C21	0.017 (2)	0.016 (2)	0.014 (2)	-0.0025 (19)	-0.0036 (19)	0.0015 (18)
C22	0.013 (2)	0.024 (3)	0.0084 (19)	-0.002 (2)	-0.0013 (17)	-0.0025 (18)
C23	0.010 (2)	0.013 (2)	0.014 (2)	-0.0029 (17)	-0.0014 (18)	-0.0018 (17)
C24	0.009 (2)	0.012 (2)	0.014 (2)	0.0035 (16)	0.0032 (17)	-0.0014 (16)
C25	0.0072 (19)	0.012 (2)	0.016 (2)	0.0006 (16)	0.0023 (18)	-0.0046 (17)
C26	0.013 (2)	0.0080 (19)	0.0137 (19)	-0.0034 (17)	-0.0007 (17)	0.0005 (16)
C27	0.021 (2)	0.014 (2)	0.014 (2)	-0.0050 (19)	0.002 (2)	-0.0065 (17)
C28	0.013 (2)	0.0046 (19)	0.017 (2)	0.0021 (16)	0.0002 (19)	-0.0015 (16)
01	0.0051 (14)	0.0118 (15)	0.0094 (14)	0.0019 (12)	0.0024 (12)	-0.0015 (11)
02	0.0050 (14)	0.0105 (15)	0.0149 (15)	-0.0010 (12)	0.0052 (12)	0.0019 (12)
03	0.0074 (15)	0.0087 (14)	0.0120 (14)	0.0004 (11)	-0.0032 (12)	0.0046 (11)
O4	0.0066 (15)	0.0113 (15)	0.0125 (15)	-0.0018 (12)	0.0003 (12)	-0.0040 (12)
05	0.0037 (14)	0.0078 (14)	0.0173 (16)	0.0010 (11)	-0.0014 (13)	-0.0021 (12)
06	0.0075 (14)	0.0103 (15)	0.0151 (15)	0.0015 (12)	0.0024 (13)	-0.0031 (12)
C29	0.0080 (17)	0.0044 (16)	0.0079 (17)	-0.0027 (14)	-0.0010 (14)	-0.0048 (13)
C30	0.0039 (16)	0.0064 (17)	0.0072 (16)	-0.0001 (14)	-0.0003 (14)	-0.0013 (13)
C31	0.0041 (16)	0.0086 (17)	0.0075 (16)	0.0002 (14)	0.0020 (14)	0.0008 (13)
C32	0.0060 (16)	0.0057 (16)	0.0071 (16)	0.0006 (14)	-0.0001 (14)	0.0038 (13)
07	0.0047 (13)	0.0089 (13)	0.0129 (14)	-0.0003 (11)	-0.0039 (12)	0.0004 (11)
08	0.0078 (14)	0.0091 (14)	0.0136 (14)	0.0020 (11)	-0.0024 (12)	0.0010 (11)

09	0.0076 (14)	0.0114 (14)	0.0114 (13)	-0.0010 (11)	0.0040 (12)	0.0047 (11)
O10	0.0055 (13)	0.0105 (14)	0.0128 (14)	0.0017 (11)	0.0027 (12)	-0.0062 (11)
O11	0.0048 (13)	0.0066 (13)	0.0118 (14)	0.0012 (11)	-0.0025 (11)	-0.0006 (11)
O12	0.0101 (14)	0.0095 (14)	0.0138 (14)	-0.0018 (12)	-0.0016 (12)	-0.0045 (12)
C33	0.0086 (17)	0.0043 (16)	0.0091 (16)	0.0023 (14)	-0.0018 (15)	-0.0036 (14)
C34	0.0046 (16)	0.0068 (17)	0.0070 (16)	-0.0008 (13)	0.0014 (14)	-0.0018 (14)
C35	0.0009 (15)	0.0065 (17)	0.0102 (16)	0.0008 (13)	-0.0017 (14)	0.0008 (13)
C36	0.0070 (17)	0.0081 (17)	0.0047 (15)	-0.0004 (14)	-0.0023 (14)	0.0004 (13)
O1W	0.0233 (19)	0.0127 (16)	0.0170 (16)	0.0060 (15)	-0.0065 (15)	-0.0027 (13)
O2W	0.0172 (17)	0.0093 (15)	0.0255 (18)	-0.0048 (14)	-0.0002 (15)	-0.0022 (13)
O3W	0.0138 (17)	0.0119 (16)	0.0227 (17)	0.0042 (13)	-0.0016 (15)	-0.0046 (13)
O4W	0.0082 (15)	0.0123 (15)	0.0095 (14)	0.0018 (13)	-0.0012 (12)	-0.0019 (11)
O5W	0.0075 (14)	0.0099 (14)	0.0098 (14)	-0.0026 (12)	-0.0003 (12)	0.0039 (11)
O6W	0.0089 (15)	0.0136 (16)	0.0113 (14)	-0.0029 (13)	-0.0001 (13)	-0.0055 (12)
O7W	0.0187 (18)	0.0106 (15)	0.0137 (15)	-0.0071 (14)	0.0046 (14)	-0.0016 (12)
O8W	0.0131 (16)	0.0117 (16)	0.0211 (17)	0.0013 (13)	0.0070 (14)	0.0005 (14)
O9W	0.0070 (15)	0.0163 (16)	0.0082 (14)	0.0030 (12)	0.0024 (12)	0.0041 (12)

Geometric parameters (Å, °)

N1—C1	1.324 (5)	C24—C28	1.503 (6)
N1-C11	1.354 (5)	C25—C26	1.447 (6)
N2-C10	1.338 (6)	С27—Н27А	0.9800
N2—C12	1.355 (5)	С27—Н27В	0.9800
N2—H2A	0.8800	C27—H27C	0.9800
C1—C2	1.419 (6)	C28—H28A	0.9800
C1—C13	1.494 (6)	C28—H28B	0.9800
C2—C3	1.369 (6)	C28—H28C	0.9800
С2—Н2	0.9500	O1—C29	1.307 (5)
C3—C4	1.426 (6)	O1—H1	0.99 (6)
С3—Н3	0.9500	O2—C29	1.217 (5)
C4—C11	1.398 (6)	O3—C30	1.422 (5)
C4—C5	1.434 (6)	O3—H3B	0.8400
С5—С6	1.355 (7)	O4—C31	1.418 (5)
С5—Н5	0.9500	O4—H4	0.8400
С6—С7	1.438 (6)	O5—C32	1.294 (5)
С6—Н6	0.9500	O6—C32	1.236 (5)
C7—C12	1.406 (6)	C29—C30	1.529 (6)
С7—С8	1.415 (6)	C30—C31	1.524 (6)
С8—С9	1.371 (7)	С30—Н30	1.0000
С8—Н8	0.9500	C31—C32	1.530 (6)
C9—C10	1.399 (6)	C31—H31	1.0000
С9—Н9	0.9500	O7—C33	1.309 (5)
C10-C14	1.503 (6)	O7—H7	0.91 (6)
C11—C12	1.445 (6)	O8—C33	1.219 (5)
C13—H13A	0.9800	O9—C34	1.412 (5)
C13—H13B	0.9800	O9—H9C	0.8400
С13—Н13С	0.9800	O10—C35	1.411 (5)
C14—H14A	0.9800	O10—H10A	0.8400

C14—H14B	0.9800	O11—C36	1.287 (5)
C14—H14C	0.9800	O12—C36	1.230 (5)
N3—C15	1.335 (6)	C33—C34	1.524 (6)
N3—C25	1.356 (6)	C34—C35	1.542 (6)
N4—C24	1.340 (5)	С34—Н34	1.0000
N4—C26	1.360 (6)	C35—C36	1.530 (6)
N4—H4C	0.8800	С35—Н35	1.0000
C15—C16	1.431 (6)	O1W—H1A	0.87 (4)
C15—C27	1.486 (7)	O1W—H1B	0.87 (4)
C16—C17	1.371 (7)	O2W—H2C	0.86 (4)
C16—H16	0.9500	O2W—H2D	0.88
C17—C18	1.414 (6)	O3W—H3C	0.87 (4)
С17—Н17	0.9500	O3W—H3D	0.87 (4)
C18—C25	1.405 (6)	O4W—H4A	0.87 (4)
C18—C19	1.442 (7)	O4W—H4B	0.87 (4)
C19—C20	1.344 (7)	O5W—H5A	0.87 (4)
С19—Н19	0.9500	O5W—H5B	0.87 (4)
C20—C21	1.436 (7)	O6W—H6A	0.87 (4)
C20—H20	0.9500	O6W—H6B	0.86 (3)
C21—C26	1.400 (6)	O7W—H7A	0.87 (4)
C21—C22	1.421 (7)	O7W—H7B	0.87 (4)
C22—C23	1.356 (7)	O8W—H8A	0.87 (4)
C22—H22	0.9500	O8W—H8B	0.87 (2)
C23—C24	1.405 (6)	O9W—H9A	0.86 (4)
С23—Н23	0.9500	O9W—H9B	0.87 (4)
C1—N1—C11	117.2 (4)	C23—C22—H22	119.5
C10—N2—C12	123.5 (4)	C21—C22—H22	119.5
C10—N2—H2A	118.3	C22—C23—C24	120.2 (4)
C12—N2—H2A	118.3	С22—С23—Н23	119.9
N1—C1—C2	122.3 (4)	С24—С23—Н23	119.9
N1—C1—C13	116.6 (4)	N4—C24—C23	118.6 (4)
C2—C1—C13	121.1 (4)	N4—C24—C28	119.1 (4)
C3—C2—C1	120.3 (4)	C23—C24—C28	122.3 (4)
С3—С2—Н2	119.9	N3—C25—C18	125.1 (4)
C1—C2—H2	119.9	N3—C25—C26	116.8 (4)
C2—C3—C4	118.5 (4)	C18—C25—C26	118.0 (4)
С2—С3—Н3	120.8	N4—C26—C21	119.9 (4)
С4—С3—Н3	120.8	N4—C26—C25	118.8 (4)
C11—C4—C3	116.5 (4)	C21—C26—C25	121.3 (4)
C11—C4—C5	121.0 (4)	С15—С27—Н27А	109.5
C3—C4—C5	122.6 (4)	С15—С27—Н27В	109.5
C6—C5—C4	120.4 (4)	H27A—C27—H27B	109.5
С6—С5—Н5	119.8	С15—С27—Н27С	109.5
С4—С5—Н5	119.8	H27A—C27—H27C	109.5
C5—C6—C7	120.7 (4)	H27B—C27—H27C	109.5
С5—С6—Н6	119.6	C24—C28—H28A	109.5
C7 C6 H6			100 5
C/=C0=110	119.6	C24—C28—H28B	109.5
C12—C7—C8	119.6 117.4 (4)	C24—C28—H28B H28A—C28—H28B	109.5 109.5

C8—C7—C6	123.3 (4)	H28A—C28—H28C	109.5
C9—C8—C7	120.4 (4)	H28B—C28—H28C	109.5
С9—С8—Н8	119.8	С29—О1—Н1	116 (3)
С7—С8—Н8	119.8	С30—О3—Н3В	109.5
C8—C9—C10	120.3 (4)	C31—O4—H4	109.5
С8—С9—Н9	119.9	O2—C29—O1	125.0 (4)
С10—С9—Н9	119.9	O2—C29—C30	121.9 (4)
N2—C10—C9	118.6 (4)	O1—C29—C30	113.0 (4)
N2	119.2 (4)	O3—C30—C31	111.2 (3)
C9—C10—C14	122.2 (4)	O3—C30—C29	108.9 (3)
N1—C11—C4	125.1 (4)	C31—C30—C29	111.0 (4)
N1—C11—C12	116.7 (4)	O3—C30—H30	108.6
C4—C11—C12	118.1 (4)	С31—С30—Н30	108.6
N2—C12—C7	119.8 (4)	С29—С30—Н30	108.6
N2—C12—C11	119.8 (4)	O4—C31—C30	111.4 (3)
C7—C12—C11	120.4 (4)	O4—C31—C32	109.1 (3)
C1—C13—H13A	109.5	C30—C31—C32	110.9 (4)
C1—C13—H13B	109.5	O4—C31—H31	108.5
H13A—C13—H13B	109.5	C30—C31—H31	108.5
C1—C13—H13C	109.5	С32—С31—Н31	108.5
H13A—C13—H13C	109.5	O6—C32—O5	124.0 (4)
H13B—C13—H13C	109.5	O6—C32—C31	120.9 (4)
C10-C14-H14A	109.5	O5—C32—C31	115.1 (4)
C10-C14-H14B	109.5	С33—07—Н7	111 (3)
H14A—C14—H14B	109.5	С34—О9—Н9С	109.5
C10-C14-H14C	109.5	С35—О10—Н10А	109.5
H14A—C14—H14C	109.5	O8—C33—O7	125.2 (4)
H14B—C14—H14C	109.5	O8—C33—C34	121.6 (4)
C15—N3—C25	117.1 (4)	O7—C33—C34	113.2 (4)
C24—N4—C26	123.2 (4)	O9—C34—C33	108.6 (4)
C24—N4—H4C	118.4	O9—C34—C35	111.5 (3)
C26—N4—H4C	118.4	C33—C34—C35	111.3 (4)
N3—C15—C16	121.8 (4)	O9—C34—H34	108.5
N3—C15—C27	116.9 (4)	С33—С34—Н34	108.5
C16—C15—C27	121.3 (4)	С35—С34—Н34	108.5
C17—C16—C15	120.6 (4)	O10—C35—C36	109.6 (4)
С17—С16—Н16	119.7	O10—C35—C34	111.2 (3)
C15-C16-H16	119.7	C36—C35—C34	109.7 (4)
C16—C17—C18	118.3 (4)	O10-C35-H35	108.8
С16—С17—Н17	120.8	С36—С35—Н35	108.8
C18—C17—H17	120.8	С34—С35—Н35	108.8
C25-C18-C17	117.1 (4)	O12-C36-O11	125.4 (4)
C25—C18—C19	119.7 (4)	O12—C36—C35	119.4 (4)
C17—C18—C19	123.2 (4)	O11—C36—C35	115.1 (4)
C20—C19—C18	121.4 (4)	H1A—O1W—H1B	103 (4)
С20—С19—Н19	119.3	H2C—O2W—H2D	103
C18—C19—H19	119.3	H3C—O3W—H3D	102 (4)
C19—C20—C21	121.0 (5)	H4A—O4W—H4B	101 (4)
С19—С20—Н20	119.5	H5A—O5W—H5B	101 (3)

C21—C20—H20	119.5	H6A—O6W—H6B	105 (4)
C26—C21—C22	117.1 (4)	H7A—O7W—H7B	102 (4)
C26—C21—C20	118.6 (4)	H8A—O8W—H8B	98 (4)
C22—C21—C20	124.2 (4)	H9A—O9W—H9B	102 (4)
C23—C22—C21	121.0 (4)		
C11—N1—C1—C2	2.7 (7)	C26—C21—C22—C23	0.0 (7)
C11—N1—C1—C13	-175.5 (4)	C20-C21-C22-C23	177.4 (5)
N1—C1—C2—C3	-2.3 (8)	C21—C22—C23—C24	0.4 (7)
C13—C1—C2—C3	175.8 (5)	C26—N4—C24—C23	-1.6 (7)
C1—C2—C3—C4	-0.2 (7)	C26—N4—C24—C28	178.9 (4)
C2—C3—C4—C11	2.1 (7)	C22—C23—C24—N4	0.4 (7)
C2—C3—C4—C5	-177.6 (5)	C22—C23—C24—C28	179.9 (5)
C11—C4—C5—C6	-3.0 (7)	C15—N3—C25—C18	1.0 (7)
C3—C4—C5—C6	176.6 (5)	C15—N3—C25—C26	178.4 (4)
C4—C5—C6—C7	3.3 (7)	C17-C18-C25-N3	-1.6(7)
C5—C6—C7—C12	-0.5 (7)	C19-C18-C25-N3	177.7 (4)
C5—C6—C7—C8	-179.4 (5)	C17—C18—C25—C26	-179.0 (4)
C12—C7—C8—C9	3.1 (7)	C19—C18—C25—C26	0.3 (7)
C6—C7—C8—C9	-177.9 (5)	C24—N4—C26—C21	2.0 (7)
C7—C8—C9—C10	-1.4 (8)	C24—N4—C26—C25	-176.6 (4)
C12—N2—C10—C9	0.9 (7)	C22—C21—C26—N4	-1.1 (7)
C12—N2—C10—C14	-179.4 (4)	C20-C21-C26-N4	-178.7 (5)
C8—C9—C10—N2	-0.7 (7)	C22—C21—C26—C25	177.4 (5)
C8—C9—C10—C14	179.6 (5)	C20—C21—C26—C25	-0.1 (7)
C1—N1—C11—C4	-0.6 (7)	N3—C25—C26—N4	1.1 (6)
C1—N1—C11—C12	177.5 (4)	C18—C25—C26—N4	178.7 (4)
C3—C4—C11—N1	-1.8 (7)	N3—C25—C26—C21	-177.5 (4)
C5-C4-C11-N1	177.9 (5)	C18—C25—C26—C21	0.1 (7)
C3—C4—C11—C12	-179.9 (4)	O2—C29—C30—O3	11.4 (6)
C5—C4—C11—C12	-0.2 (7)	O1—C29—C30—O3	-169.4 (3)
C10—N2—C12—C7	1.0 (7)	O2—C29—C30—C31	134.1 (4)
C10—N2—C12—C11	-178.2 (4)	O1—C29—C30—C31	-46.7(5)
C8—C7—C12—N2	-2.9 (7)	O3—C30—C31—O4	60.1 (4)
C6—C7—C12—N2	178.1 (4)	C29—C30—C31—O4	-61.2(5)
C8—C7—C12—C11	176.2 (4)	03 - C30 - C31 - C32	-61.5(5)
C6—C7—C12—C11	-2.8(7)	C_{29} C_{30} C_{31} C_{32}	177.1 (3)
N1-C11-C12-N2	4.0 (6)	04-C31-C32-06	4.8 (6)
C4—C11—C12—N2	-177.8 (4)	C30—C31—C32—O6	127.8 (4)
N1-C11-C12-C7	-1752(4)	04-031-032-05	-1760(3)
C4-C11-C12-C7	30(7)	C_{30} C_{31} C_{32} C_{52}	-531(5)
$C_{25} N_{3} C_{15} C_{16}$	03(6)	08-03-03-09	13 3 (6)
$C_{25} = N_{3} = C_{15} = C_{27}$	179 7 (4)	$07 - C_{33} - C_{34} - 09$	-1682(3)
N3-C15-C16-C17	-1.0(7)	08-C33-C34-C35	136.4 (4)
C_{27} C_{15} C_{16} C_{17}	179 7 (5)	$07 - C_{33} - C_{34} - C_{35}$	-451(5)
C15-C16-C17-C18	0.4 (7)	09-C34-C35-010	58.9 (4)
C16-C17-C18-C25	0.8 (7)	C_{33} C_{34} C_{35} $-O_{10}$	-62.5(5)
C16-C17-C18-C19	-178.4 (5)	09-C34-C35-C36	-62.5(5)
C_{25} — C_{18} — C_{19} — C_{20}	-0.6 (7)	C_{33} — C_{34} — C_{35} — C_{36}	176.1 (3)
C17-C18-C19-C20	178 6 (5)	010-C35-C36-012	15(6)
		010 000 000 012	(~)

C18—C19—C20—C21	0.5 (8)		C34—C35—C36—O12		123.8 (4)
C19—C20—C21—C26	-0.2 (8)		010-C35-C36-011		179.6 (3)
C19—C20—C21—C22	-177.5 (5)		C34—C35—C36—O11		-58.1 (5)
Hydrogen-bond geometry (Å, °)					
D—H··· A	D	—Н	H···A	$D \cdots A$	D—H··· A
N2—H2A···O1W	0.	.88	1.97	2.820 (5)	162
N4—H4C···O7W	0.	.88	1.98	2.814 (5)	159
O4—H4…O6W	0.	.84	1.80	2.633 (5)	175
O9—H9C…O5W	0.	.84	1.83	2.673 (4)	177
O10—H10A…O4W	0.	.84	1.79	2.627 (5)	172
O2W—H2C···O11	0.	.86 (4)	1.97 (2)	2.783 (4)	157 (4)
O3W—H3C····O5	0.	.87 (4)	1.95 (2)	2.798 (5)	168 (5)
O2W—H2D···O8W	0.	.88	2.42	2.903 (5)	115
O5W—H5A····O3	0.	.87 (4)	2.04 (3)	2.827 (4)	151 (5)
O5W—H5A···O2	0.	.87 (4)	2.35 (4)	3.020 (4)	135 (5)
O8W—H8B···O2W	0.	.87 (2)	2.03 (2)	2.903 (5)	178 (5)
O9W—H9A···O2	0.	.86 (4)	1.89 (2)	2.744 (4)	175 (5)
O9W—H9B…O9	0.	.87 (4)	2.08 (4)	2.849 (4)	147 (5)
O9W—H9B…O8	0.	.87 (4)	2.26 (4)	2.958 (4)	137 (5)
O1—H1···O5 ⁱ	0.	.99 (6)	1.49 (6)	2.473 (4)	172 (5)
07—H7…O11 ⁱ	0.	.91 (6)	1.60 (6)	2.496 (4)	167 (5)
O4W—H4B···O12 ⁱ	0.	.87 (2)	1.85 (2)	2.720 (5)	178 (6)
O6W—H6B···O6 ⁱ	0.	.86 (3)	1.93 (2)	2.776 (5)	167 (5)
O3—H3B···O9W ⁱⁱ	0.	.84	1.81	2.647 (5)	173
O5W—H5B···O8 ⁱⁱ	0.	.87 (4)	1.91 (2)	2.761 (4)	168 (5)
O1W—H1A…O2W ⁱⁱⁱ	0.	.87 (4)	2.22 (3)	3.062 (5)	161 (5)
O1W—H1B···O5W ⁱⁱⁱ	0.	.87 (4)	1.96 (2)	2.811 (5)	168 (6)
O3W—H3D····O8W ⁱⁱⁱ	0.	.87 (4)	2.02 (2)	2.876 (5)	168 (5)
O4W—H4A…O10 ^{iv}	0.	.87 (4)	1.99 (3)	2.815 (4)	160 (5)
O4W—H4A…O12 ^{iv}	0.	.87 (4)	2.40 (4)	2.998 (4)	127 (4)
O6W—H6A···O4 ^v	0.	.87 (4)	2.15 (4)	2.892 (4)	143 (5)
O6W—H6A···O6 ^v	0.	.87 (4)	2.19 (4)	2.909 (5)	140 (5)
O7W—H7A···O3W ^{vi}	0.	.87 (4)	2.17 (3)	2.988 (5)	156 (5)
O7W—H7B…O9W ^{vii}	0.	.87 (4)	2.02 (2)	2.869 (5)	165 (5)
O8W—H8A…O1 ^{vii}	0.	.87 (4)	2.06 (2)	2.926 (5)	170 (5)

Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) -x, y+1/2, -z+1/2; (iv) x-1/2, -y+1/2, -z+1; (v) x-1/2, -y+1/2, -z; (vi) -x+1, y-1/2, -z+1/2; (vii) -x, y-1/2, -z+1/2.

Fig. 1

Fig. 3

